Surname

Centre Number

GCE AS/A level

1091/01

CHEMISTRY – CH1

A.M. FRIDAY, 23 May 2014

1 hour 30 minutes

	For Ex	For Examiner's use only					
	Question	Maximum Mark	Mark Awarded				
Section A	1. to 7.	10					
Section B	8.	14					
	9.	11					
	10.	14					
need a:	11.	17					
EC. you require.	12.	14					
,	Total	80					

ADDITIONAL MATERIALS

In addition to this examination paper, you will n

- calculator:
- copy of the Periodic Table supplied by WJE Refer to it for any relative atomic masses y

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer all questions in the spaces provided.

Section B Answer all questions in the spaces provided.

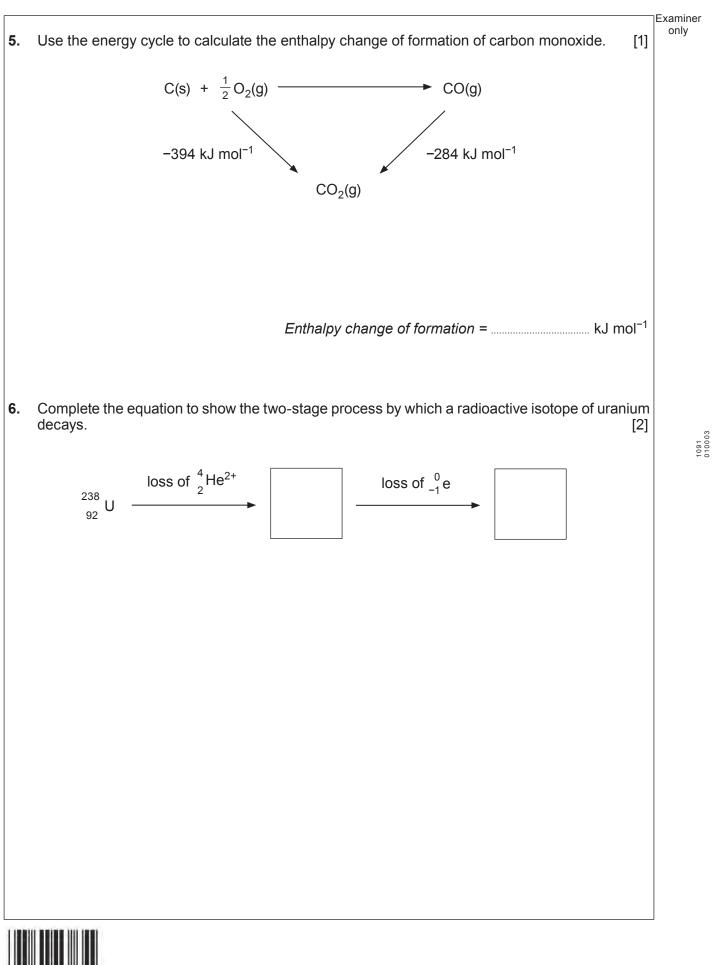
Candidates are advised to allocate their time appropriately between Section A (10 marks) and Section B (70 marks).

INFORMATION FOR CANDIDATES

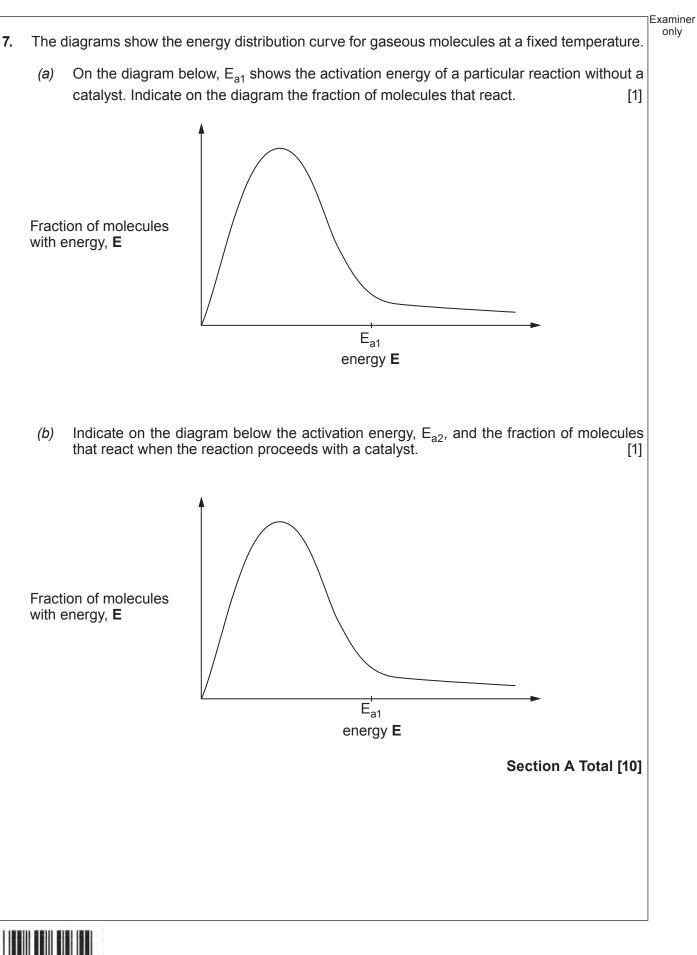
The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

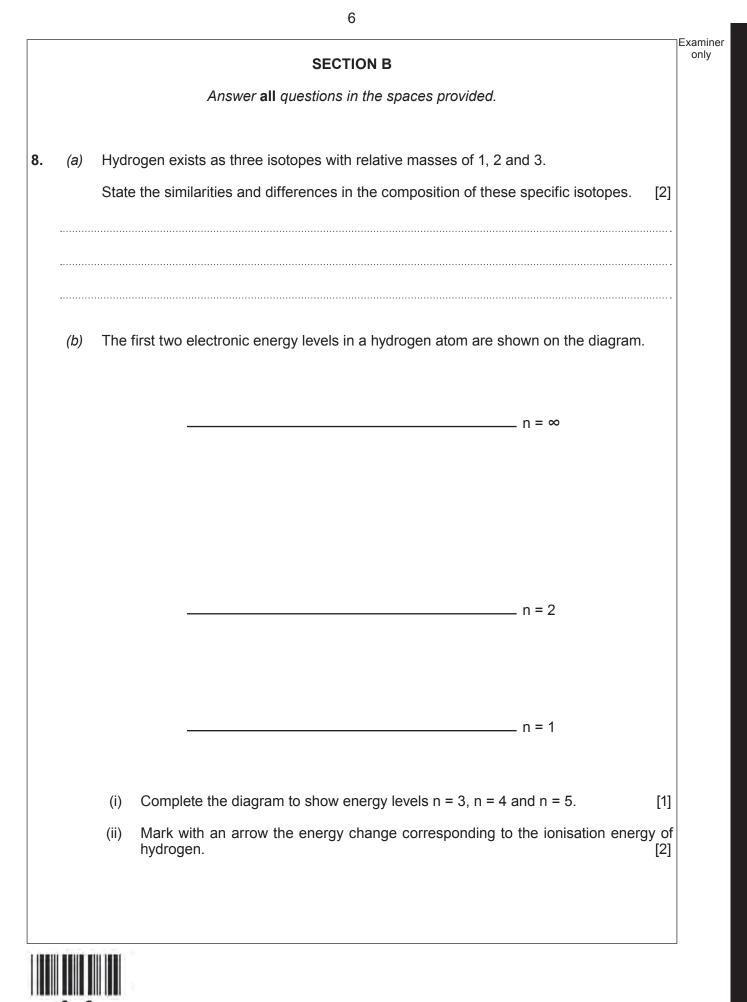
Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.


The QWC label alongside particular part-questions indicates those where the Quality of Written Communication is assessed.

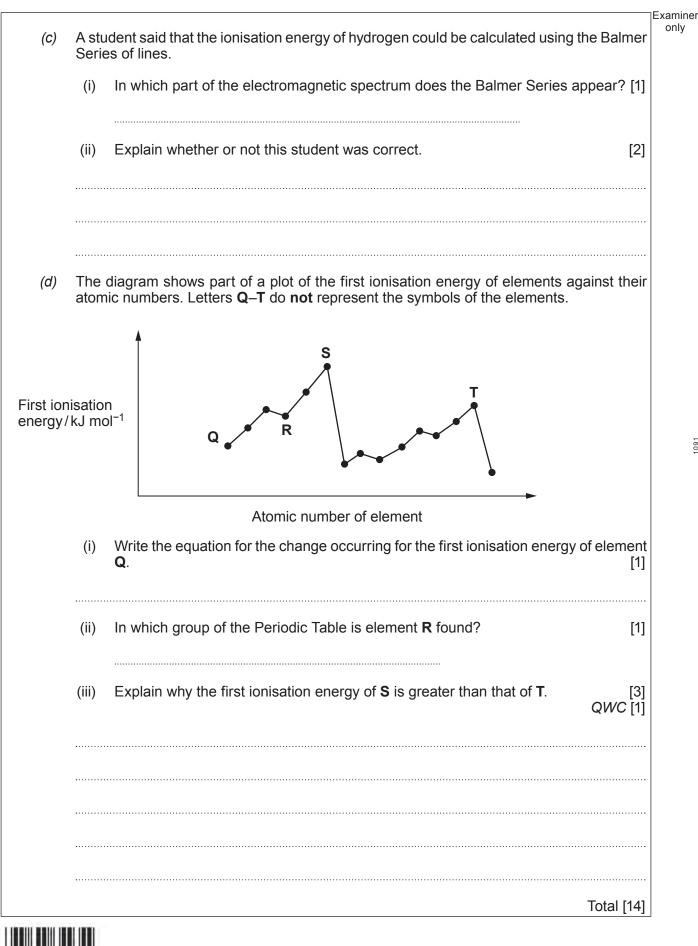
If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.


	SECTION A	
	Answer all questions in the spaces provided.	
•	Complete the electronic structure for the sulfide ion present in Na ₂ S. 1s ²	[1]
	Which isotope is the standard used in defining relative atomic masses?	[1]
	State one example of an industrially or environmentally important heterogeneous catalyst. Should identify the reaction catalysed and name the catalyst.	You [1]
	Hydrated sodium carbonate has the formula $Na_2CO_3.10H_2O$. (<i>a</i>) Calculate the relative molecular mass (M_r) of $Na_2CO_3.10H_2O$.	[1]
	(b) Calculate the mass of Na ₂ CO ₃ .10H ₂ O needed to make 250 cm ³ of a 0.10 mol d solution.	
	Mass =	g

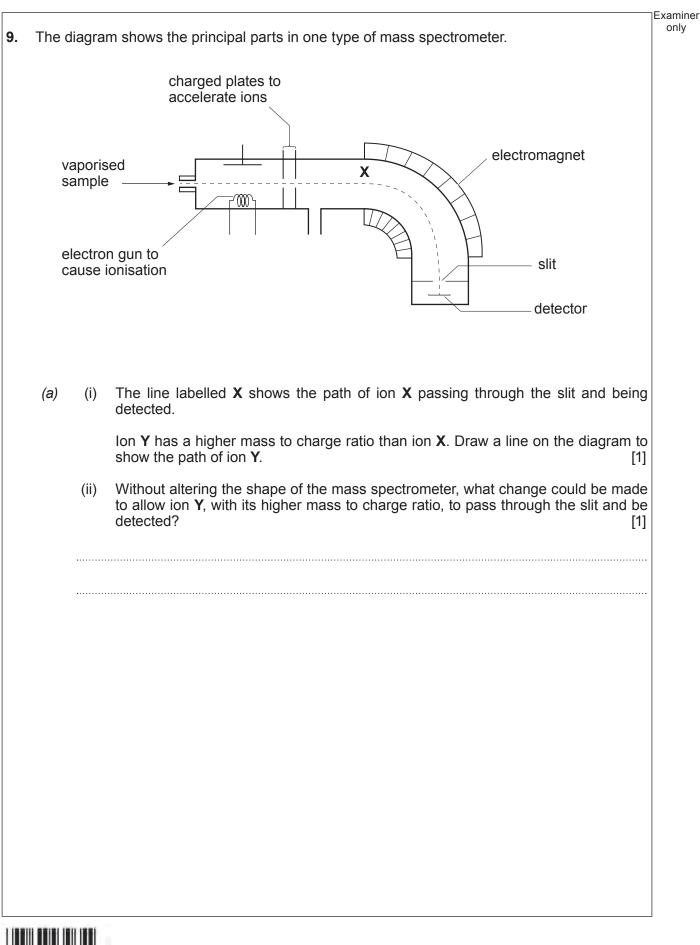
0


BLANK PAGE

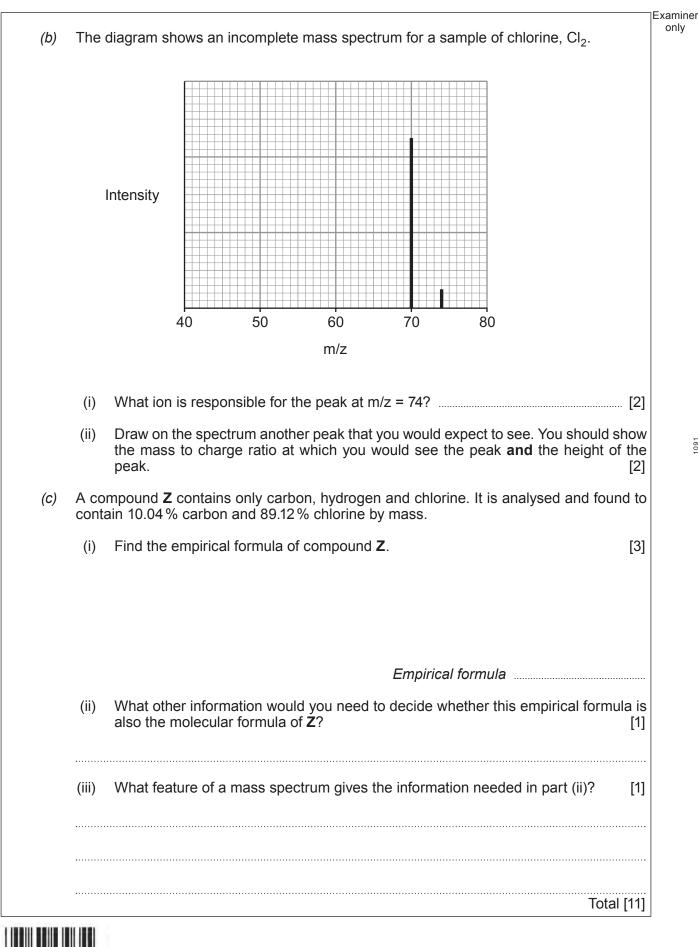
PLEASE DO NOT WRITE ON THIS PAGE



1091 010005



1091 010007



1091 010009

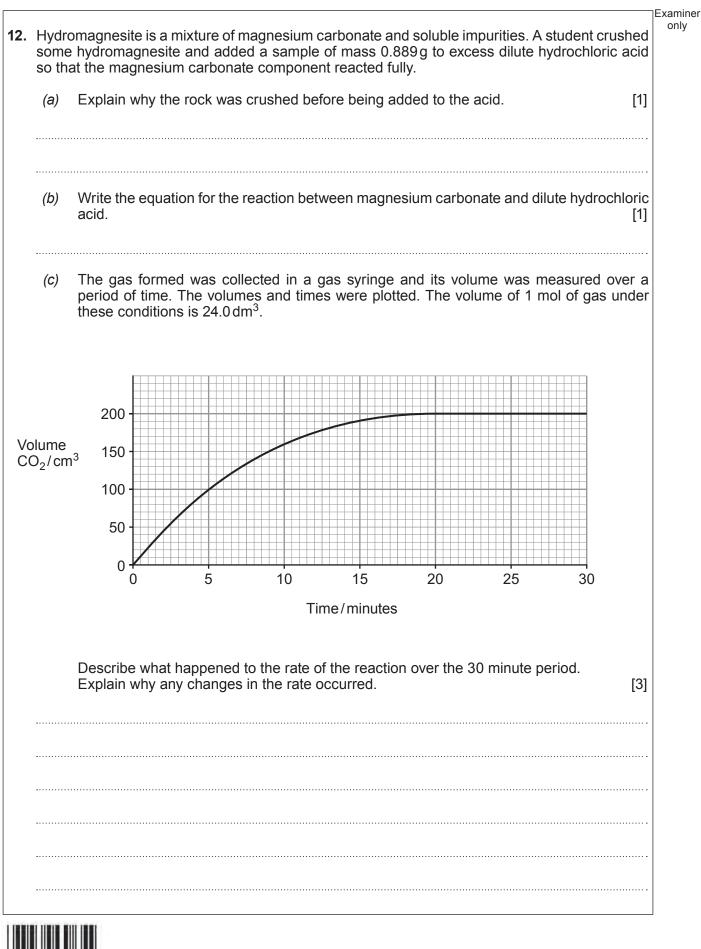
10. The decomposition of dinitrogen(IV) oxide into nitrogen(IV) oxide is a reversible reaction the establishes a dynamic equilibrium.						
		$N_2O_4(g) \iff 2NO_2(g) \qquad \Delta H = +57 \text{ kJ mol}^{-1}$ pale yellow dark brown				
	(a)	State the meaning of the term <i>dynamic equilibrium</i> . [1]				
	(b)	The conditions applied to an equilibrium mixture of dinitrogen(IV) oxide and nitrogen(IV) oxide were changed. For each of the following, state what was seen and explain any change that occurred.				
		Temperature increased				
		Pressure increased				
		A catalyst was added				

	Hydrazine, N_2H_4 , is an unstable liquid that decomposes according t equation.	o the following
	$N_2H_4(I) \longrightarrow N_2(g) + 2H_2(g)$	
((i) Calculate the volume of gas that could be obtained from 14 kg of hy Assume that the volume of 1 mol of gas is 24.0 dm ³ .	/drazine. [3]
((ii) One use of hydrazine is as a fuel in rockets. Apart from any energy one feature of this reaction that suggests it would be useful in rocket 	v changes, state et propulsion.
		[1]
<i>(d)</i> N	Vitrogen (IV) oxide reacts with water.	
	$H_2O + 2NO_2 \longrightarrow HNO_2 + HNO_3$	
В	Both nitric(III) acid, HNO_2 , and nitric(V) acid, HNO_3 , are described as bei	ing acids.
((i) Define an <i>acid</i> .	[1]
((ii) Complete the equation to show nitric(III) acid behaving as an acid.	[1]
	$HNO_2 + H_2O \longrightarrow$	
(i	iii) When concentrated nitric(V) acid is mixed with concentrated s reaction shown below occurs.	ulfuric acid the
	$HNO_3 + H_2SO_4 \longrightarrow H_2NO_3^+ + HSO_4^-$	
	Explain this reaction in terms of acid-base behaviour.	[2]
		Total [14]

(a)	Etha	nol, C ₂ H ₅ OH, is a liquid at room temperature. It is being increasingly used as a fuel.
	(i)	Write the equation that represents the standard molar enthalpy change of formation $(\Delta H_{\rm f})$ of ethanol. [1]
	(ii)	Suggest why this enthalpy change cannot be measured directly. [1]
(b)		alpy changes of combustion can often be measured directly. The equation for the tion which represents the enthalpy change of combustion (ΔH_c) of ethanol is as ws.
		$C_2H_5OH(I) + 3O_2(g) \longrightarrow 2CO_2(g) + 3H_2O(I)$
	A stu etha	Ident used the apparatus below to determine the enthalpy change of combustion of nol.
	The	student obtained the following results.
	Mas Tem Tem	s of spirit burner + ethanol at start= $72.27 \mathrm{g}$ s of spirit burner + ethanol after combustion= $71.46 \mathrm{g}$ perature of water at start= $21.5 ^{\circ}\mathrm{C}$ perature of water after combustion= $75.5 ^{\circ}\mathrm{C}$ me of water in calorimeter= $100 \mathrm{cm}^3$
	The	energy released in the experiment can be calculated using the formula
		energy released = $mc\Delta T$
	whe	The m = mass of the water in grams (assume 1 cm^3 has a mass of 1 g) c = $4.2 \text{ Jg}^{-1} \text{ c}^{-1}$ ΔT = change in temperature of the water

13

	(i)	Calculate the energy released in the experiment. [1	Examin only
		Energy released =	J
	(ii)	The enthalpy change of combustion of ethanol is defined as the energy change per mol of ethanol burned.	er
		Use your answer to (i) to calculate the enthalpy change of combustion of ethano Give your answer in kJ mol ⁻¹ and correct to 3 significant figures . Include the sign.	e
		∆H _c of ethanol = kJ mol [−] sign value	1
(C)		ther student did not carry out an experiment to find ΔH_c of ethanol. He looked up the sture value on a respected internet site.	e
		would you expect the numerical values obtained by the two students to differ ain your answer.	?
		may assume that both values were found under the same conditions of temperatur pressure.	
.			

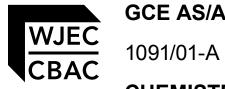


		gher relative molecular mass alcohols. They found that as the number of carbon is increased the value of the enthalpy change of combustion became more negative.
	(i)	Write the equation for the reaction which represents the enthalpy change of combustion of propanol, C_3H_7OH . [1]
	(ii)	In terms of bond strengths, explain why enthalpy changes of combustion are negative. [1]
	(iii)	Explain why the enthalpy change of combustion of propanol is more negative than that of ethanol. [1]
(e)		ent research has been carried out to find economic and environmentally friendly uses raste straw and wood chippings.
	of ab also Anot	process of gasification involves the material being partly combusted at a temperature out 700 °C to give a mixture consisting mainly of hydrogen and carbon monoxide but some carbon dioxide. her approach has been to use enzyme catalysed reactions to change the waste
	Com	rial into glucose and then to ethanol. ment on the economic and environmental factors involved in both of these [4] QWC [2]
		Total [17]

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

(d)	Othe in ex	er than by using an indicator, how would the student know that hydrochloric acid was acess?
<i>(e)</i>	(i)	Use the graph to calculate how many moles of magnesium carbonate reacted with the hydrochloric acid. [2]
	(ii)	<i>Number of moles</i> MgCO ₃ = mol Find the mass of magnesium carbonate that reacted and hence the percentage of magnesium carbonate present in hydromagnesite. [2]
		Percentage of magnesium carbonate =%
17		© WJEC CBAC Ltd. (1091-01) Turn over.


(f)	A student wanted to carry out this experiment on another sample of hydromagnesite. He	
	did not have a gas syringe and therefore he decided to collect the carbon dioxide over water in a measuring cylinder.	
carbon dioxide		
	water	
	ain what effect this would have on the results of the experiment. You should assume that as syringe and the measuring cylinder can both be read to the same precision. [2]	
the g	as syninge and the measuring cylinder can both be read to the same precision. [2]	
••••••		
••••••		
(g)	When magnesium carbonate is heated it decomposes to make magnesium oxide and carbon dioxide.	
	$MgCO_3(s) \longrightarrow MgO(s) + CO_2(g)$	
	Magnesium oxide has a very high melting temperature and so can be used to line furnaces.	
	What is the atom economy for the production of magnesium oxide from magnesium carbonate? [2]	
	Atom economy = %	
	Total [14]	
	Section B Total [70]	
	END OF PAPER	
1 8	© WJEC CBAC Ltd. (1091-01)	

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

GCE AS/A level

CHEMISTRY – PERIODIC TABLE FOR USE WITH CH1

A.M. FRIDAY, 23 May 2014

THE PERIODIC TABLE

		[<u>د</u>	_	_]			
0	4.00 Helium 2	20.2 Neon 10	40.0 Ar Argon 18	83.8 Kr Krypton 36	131 Xenon 54	(222) Rn Radon 86				
~		19.0 Fluorine 9	35.5 CI Chlorine 17	79.9 Br Bromine	127 lodine 53	(210) At Astatine 85	,	175 Lu Lutetium 71	(257) Lr Lawrencium 103	
9	p Block	16.0 Oxygen 8	32.1 Sulfur 16	79.0 Selenium 34	128 Te Tellurium 52	(210) PO Polonium 84		173 Yb Ytterbium 70	(254) Nobelium 102	
Ŝ	d E	14.0 Nitrogen	31.0 Phosphorus 15	74.9 As Arsenic 33	122 Sb Antimony 51	209 Bi Bismuth 83		169 Thulium 69	(256) Md Mendelevium 101	
4		12.0 Carbon 6	28.1 Silicon 14	72.6 Ge Germanium 32	119 Sn 50	207 Pb Lead 82		167 Er Erbium 68	(253) Fm Fermium 100	
ო		10.8 Boron 5	27.0 Al 13	69.7 Ga Gallium 31	115 Indium 49	204 TI Thallium 81		165 HO Holmium 67	(254) ES Einsteinium 99	
				65.4 Zn 30	112 Cd Cadmium 48	201 Hg Mercury 80		163 Dy Dyspresium 66	(251) Cf 98	
				63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79	f Block	159 Tb Terbium 65	(245) BK Berkelium 97	
				58.7 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78	fB	157 Gadolinium 64	(247) Cm ^{Curium} 96	
				58.9 Co Cobalt 27	103 Rh Rhodium 45	192 Ir Iridium		(153) Eu Europium 63	(243) Am Americium 95	
Group	elative	elative atomic mass	relative atomic mass atomic number DCK		55.8 Fe Iron 26	101 Ruthenium 44	190 Osmium 76		150 Sm 62 62	(242) Pu 94
50	Key	Symbol Name Z	qB	54.9 Mn Manganese 25	98.9 TC Technetium 43	186 Re Rhenium 75		(147) Pm Promethium 61	(237) Np Neptunium 93	
		б ²		52.0 Chromium 24	95.9 No Molybdenum 42	184 W Tungsten 74		144 Neodymium 60	238 Uranium 92	
			50.9 Vanadium 23	92.9 Nb Niobium	181 Ta Tantalum 73		141 Praseodymium 59	(231) Pa Protactinium 91		
				47.9 Ti Titanium 22	91.2 Zr Zirconium 40	179 Hafnium 72	,	140 Cerium 58	232 Thorium 90	
	A			45.0 Sc 21	88.9 Yttrium 39	139 La Lanthanum	ACtinium 89	 Lanthanoid elements 	 Actinoid elements 	
N	<u></u>	9.01 Be Beryllium	24.3 Mg Magnesium 12	40.1 Ca Calcium 20	87.6 Sr Strontium 38	137 Ba Barium 56	(226) Ra Radium 88	► Lar el€	e A	
	Hydrogen 1.01 1.01 1.01	6.94 Li Lithium	23.0 Na Sodium	^{39.1} Potassium 19	85.5 Rb Rubidium 37	133 Cs Caesium 55	(223) Fr Francium 87			
Doriod		N	ო	4	2ı	9	~			
D	D	© WJEC C	BAC Ltd.	(1091-0	1A)					